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Introduction

Adaptive design (Lai and Robbins, 1978), or stochastic regression
(Lai and Wei, 1982), considers the model

yi =M(xi) + ϵi , (1)

where for i = 1, 2, . . .,

• {xi} is sequentially determined;
• M(⋅) may be nonlinear;
• {ϵi} may be iid or martingale difference sequence (mds).

Meaning of adaptive design
In fixed and random design, {xi} is deterministic and random,
respectively. However, we may not have control over {xi}, whereas
we do in adaptive design. Interestingly, there is another term
"design-adaptive"; see Fan (1992).
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Motivation

Lai and Robbins (1978) motivated adaptive design with the
following setting:

• yi : response value of the i-th patient;
• xi : dosage level of some drug;
• y∗: optimal response value, which is known;
• M(⋅): regression function, which is unknown;
• θ: optimal dosage level, which is unknown as we cannot solve

y∗ =M(θ).

A multi-period control problem under uncertainty
How to choose {xi} sequentially such that {yi} is as close as
possible in some sense to y∗? There is a dilemma between a good
final estimate of θ and a small cost, e.g., ∑n

i=1(xi − θ)2.
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Simplified problem, known β

For presentation purpose, assume ϵi
iid∼ N(0, σ2), and

M(xi) = β(xi − θ), (2)

which corresponds to y∗ =M(θ) = 0. Let the cost at stage n be

Cn =
n
∑
i=1
(xi − θ)2. (3)

To estimate θ when β is known, we may use the least squares
estimator

θ̂n = x̄n − ȳn/β = θ − ϵ̄n/β, (4)

where x̄n = ∑n
i=1 xi/n.
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Adaptive design, known β

To minimize Cn, adaptive design let x1, the initial best guess of θ,
to be a random variable such that E(x2

1 ) < ∞, and

xn+1 = θ̂n = θ − ϵ̄n/β. (5)

An advantage of adaptive design
Adaptive design reduces the expected cost from O(n) to O(log n).

Proof:

E(Cn) = E(x1 − θ)2 +
n−1
∑
i=1

E(θi − θ)2

= O(1) + σ2

β
(1 + 1

2
+⋯ + 1

n − 1
) ∼ σ2

β
log n.
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General problems

Assuming a simple linear M and a known β are not realistic. There
are different extensions, which still keep the advantages of adaptive
design in general:

1. Univariate nonlinear M under some conditions (Lai and
Robbins, 1979);

2. Multivariate linear M (Lai and Wei, 1982);
3. Fixed guess of β (Lai and Robbins, 1979);
4. Stochastic approximated estimates of β (Lai and Robbins,

1979);
5. Iterated least squares estimates of β (Lai and Robbins, 1982).
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Theoretical techniques

It is difficult to analyze the theoretical techniques, which are beyond
the level of this course. However, we can get to know the them (see
Lai and Ying (2006) for their history), which may be helpful for
future research:

• Convergence system;
• Lacunary system;
• Extended stochastic Lyapunov function.
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Convergence system

Definition
A sequence of random variables ϵi is called a convergence system if

∞
∑
i=1

aiϵi converges a.s.

for all nonrandom {ai}i≥1 such that ∑∞i=1 a2
i < ∞. This was used to

establish strong consistency of least squares estimates in multiple
linear regression with fixed design and mds noise.

Comment
The standard technique to prove almost sure convergence is the
Borel–Cantelli lemma. Convergence system provides an alternative
way to do so. If ϵi ’s are not iid nor mds, we may consider weakening
the dependence, e.g., some mixing condition.
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Lacunary system

Definition
A sequence of random variables ϵi is called a lacunary system of
order p > 0, or Sp system, if there exists a positive constant Kp such
that for all nonrandom ai ,

E ∣
n
∑
i=m

aiϵi ∣
p
≤ Kp (

n
∑
i=m

a2
i )

p
2

for all n ≥ m ≥ m0.

This was used to generalize the consistency theorems with fixed
design.

Comment
It seems that this technique reduces the order from O{(n −m)p} to
O{(n −m)p/2}. Reduction of this kind reminds us of the Burkholder
inequality.
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Extended stochastic Lyapunov function

Definition
Let {ϵn,Fn, n ≥ 1} be a martingale difference such that
supn E(ϵ2

n ∣ Fn−1) < ∞ a.s.. An extended stochastic Lyapunov
function Vn is a nonnegative Fn-measurable random variable
satisfying

Vn ≤ (1 + an−1)Vn−1 + bn − cn +wn−1ϵn a.s.,

where an ≥ 0, bn ≥ 0, cn ≥ 0 and wn are Fn-measurable random
variables such that ∑∞n=1 an < ∞. This was used to establish the
consistency theorems with adaptive design.

Comment
This seems important in the analysis of stochastic approximation
algorithms. Strangely, we do not see it in recent literature.
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(Potential) applications

Adaptive stochastic gradient descent
Estimation of β is similar to selection of learning rate in stochastic
gradient descent; see Lai and Robbins (1979) for the relationship
between adaptive design and stochastic approximation.

Reinforcement learning and bandit problem
Jingbo has explained the importance of elliptical potential lemma in
class. See also Lai and Robbins (1985).

Operation research
If xi ’s are prices and yi ’s are profits on a e-commerce platform,
adaptive design may be used for profit maximization. We need to
deal with issues like unknown y∗ and changing M though.

12/20



Recursive estimation

In adaptive design, xn+1 = x̄n − ȳn/β̂n is chosen sequentially. It is
trivial that ȳn and

x̄n =
(n − 1)x̄n−1 + xn

n
, (6)

can be updated in constant time. However, usual computation of β̂n

costs O(n) time, which motivates recursive estimation:

β̂n = β̂n−1 + Pnxn(yn − xnβ̂n−1), (7)

Pn = Pn−1 −
Pn−1xnxnPn−1
1 + xnPn−1xn

. (8)

Lai and Ying (1991a) and Lai and Ying (1991b) extended this
iterated least squares to other settings.
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More on recursive estimation

Usage of recursive estimation
Interestingly, apart from using a similar term "design-adaptive" to
refer to a different thing, Fan (1992) also led to a different usage of
recursive estimation. In Fan and Marron (1994), recursive
estimation technique was used to improve the time complexity for a
fixed sample size n; see also Seifert et al. (1994). In contrast,
recursive estimators in adaptive design concern an increasing n
where the observations arrive sequentially.
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Simulations

Consider
yn = 12.3(xn − 20.21) + ϵn,

where

• ϵn
iid∼ N(0, 10002);

• xn+1 = x̄n − ȳn/β̂n;
• β̂n is updated recursively using (7) and (8).

How to do inference on xn+1, or function of x1, . . . , xn in general?
We may use the self-normalizer in Shao (2010), which can also be
updated recursively.
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Simulations, mean of x1, . . . , xn
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Simulations, median of x1, . . . , xn
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